Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural insight into poplar glutaredoxin C1 with a bridging iron-sulfur cluster at the active site.

Identifieur interne : 003D17 ( Main/Exploration ); précédent : 003D16; suivant : 003D18

Structural insight into poplar glutaredoxin C1 with a bridging iron-sulfur cluster at the active site.

Auteurs : Yingang Feng [République populaire de Chine] ; Nan Zhong ; Nicolas Rouhier ; Toshiharu Hase ; Masami Kusunoki ; Jean-Pierre Jacquot ; Changwen Jin ; Bin Xia

Source :

RBID : pubmed:16800625

Descripteurs français

English descriptors

Abstract

Glutaredoxins are glutathione-dependent enzymes that function to reduce disulfide bonds in vivo. Interestingly, a recent discovery indicates that some glutaredoxins can also exist in another form, an iron-sulfur protein [Lillig, C. H., et al. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 8168-8173]. This provides a direct connection between glutaredoxins and iron-sulfur proteins, suggesting a possible new regulatory role of iron-sulfur clusters along with the new functional switch of glutaredoxins. Biochemical studies have indicated that poplar glutaredoxin C1 (Grx-C1) is also such a biform protein. The apo form (monomer) of Grx-C1 is a regular glutaredoxin, and the holo form (dimer) is an iron-sulfur protein with a bridging [2Fe-2S] cluster. Here, we report the structural characterizations of poplar Grx-C1 in both the apo and holo forms by NMR spectroscopy. The solution structure of the reduced apo Grx-C1, which is the first plant Grx structure, shows a typical Grx fold. When poplar Grx-C1 forms a dimer with an iron-sulfur cluster, each subunit of the holo form still retains the overall fold of the apo form. The bridging iron-sulfur cluster in holo Grx-C1 is coordinated near the active site. In addition to the iron-sulfur cluster linker, helix alpha3 of each subunit is probably involved in the direct contact between the two subunits. Moreover, two glutathione molecules are identified in the vicinity of the iron-sulfur cluster and very likely participate in cluster coordination. Taken together, we propose that the bridging [2Fe-2S] cluster is coordinated by the first cysteine at the glutaredoxin active site from each subunit of holo Grx-C1, along with two cysteines from two glutathione molecules. Our studies reveal that holo Grx-C1 has a novel structural and iron-sulfur cluster coordination pattern for an iron-sulfur protein.

DOI: 10.1021/bi060444t
PubMed: 16800625


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural insight into poplar glutaredoxin C1 with a bridging iron-sulfur cluster at the active site.</title>
<author>
<name sortKey="Feng, Yingang" sort="Feng, Yingang" uniqKey="Feng Y" first="Yingang" last="Feng">Yingang Feng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Nuclear Magnetic Resonance Center, Beijing 100871, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Nuclear Magnetic Resonance Center, Beijing 100871</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhong, Nan" sort="Zhong, Nan" uniqKey="Zhong N" first="Nan" last="Zhong">Nan Zhong</name>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</author>
<author>
<name sortKey="Hase, Toshiharu" sort="Hase, Toshiharu" uniqKey="Hase T" first="Toshiharu" last="Hase">Toshiharu Hase</name>
</author>
<author>
<name sortKey="Kusunoki, Masami" sort="Kusunoki, Masami" uniqKey="Kusunoki M" first="Masami" last="Kusunoki">Masami Kusunoki</name>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
</author>
<author>
<name sortKey="Jin, Changwen" sort="Jin, Changwen" uniqKey="Jin C" first="Changwen" last="Jin">Changwen Jin</name>
</author>
<author>
<name sortKey="Xia, Bin" sort="Xia, Bin" uniqKey="Xia B" first="Bin" last="Xia">Bin Xia</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16800625</idno>
<idno type="pmid">16800625</idno>
<idno type="doi">10.1021/bi060444t</idno>
<idno type="wicri:Area/Main/Corpus">003D85</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003D85</idno>
<idno type="wicri:Area/Main/Curation">003D85</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003D85</idno>
<idno type="wicri:Area/Main/Exploration">003D85</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural insight into poplar glutaredoxin C1 with a bridging iron-sulfur cluster at the active site.</title>
<author>
<name sortKey="Feng, Yingang" sort="Feng, Yingang" uniqKey="Feng Y" first="Yingang" last="Feng">Yingang Feng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Nuclear Magnetic Resonance Center, Beijing 100871, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Nuclear Magnetic Resonance Center, Beijing 100871</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhong, Nan" sort="Zhong, Nan" uniqKey="Zhong N" first="Nan" last="Zhong">Nan Zhong</name>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</author>
<author>
<name sortKey="Hase, Toshiharu" sort="Hase, Toshiharu" uniqKey="Hase T" first="Toshiharu" last="Hase">Toshiharu Hase</name>
</author>
<author>
<name sortKey="Kusunoki, Masami" sort="Kusunoki, Masami" uniqKey="Kusunoki M" first="Masami" last="Kusunoki">Masami Kusunoki</name>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
</author>
<author>
<name sortKey="Jin, Changwen" sort="Jin, Changwen" uniqKey="Jin C" first="Changwen" last="Jin">Changwen Jin</name>
</author>
<author>
<name sortKey="Xia, Bin" sort="Xia, Bin" uniqKey="Xia B" first="Bin" last="Xia">Bin Xia</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Dimerization (MeSH)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Kinetics (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Protein Conformation (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Dimérisation (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Populus (enzymologie)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Sites de fixation (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Iron-Sulfur Proteins</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Conserved Sequence</term>
<term>Dimerization</term>
<term>Humans</term>
<term>Kinetics</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Protein Conformation</term>
<term>Sequence Alignment</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Cinétique</term>
<term>Conformation des protéines</term>
<term>Dimérisation</term>
<term>Données de séquences moléculaires</term>
<term>Glutarédoxines</term>
<term>Humains</term>
<term>Modèles moléculaires</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Sites de fixation</term>
<term>Séquence conservée</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxins are glutathione-dependent enzymes that function to reduce disulfide bonds in vivo. Interestingly, a recent discovery indicates that some glutaredoxins can also exist in another form, an iron-sulfur protein [Lillig, C. H., et al. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 8168-8173]. This provides a direct connection between glutaredoxins and iron-sulfur proteins, suggesting a possible new regulatory role of iron-sulfur clusters along with the new functional switch of glutaredoxins. Biochemical studies have indicated that poplar glutaredoxin C1 (Grx-C1) is also such a biform protein. The apo form (monomer) of Grx-C1 is a regular glutaredoxin, and the holo form (dimer) is an iron-sulfur protein with a bridging [2Fe-2S] cluster. Here, we report the structural characterizations of poplar Grx-C1 in both the apo and holo forms by NMR spectroscopy. The solution structure of the reduced apo Grx-C1, which is the first plant Grx structure, shows a typical Grx fold. When poplar Grx-C1 forms a dimer with an iron-sulfur cluster, each subunit of the holo form still retains the overall fold of the apo form. The bridging iron-sulfur cluster in holo Grx-C1 is coordinated near the active site. In addition to the iron-sulfur cluster linker, helix alpha3 of each subunit is probably involved in the direct contact between the two subunits. Moreover, two glutathione molecules are identified in the vicinity of the iron-sulfur cluster and very likely participate in cluster coordination. Taken together, we propose that the bridging [2Fe-2S] cluster is coordinated by the first cysteine at the glutaredoxin active site from each subunit of holo Grx-C1, along with two cysteines from two glutathione molecules. Our studies reveal that holo Grx-C1 has a novel structural and iron-sulfur cluster coordination pattern for an iron-sulfur protein.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16800625</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>08</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2007</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>45</Volume>
<Issue>26</Issue>
<PubDate>
<Year>2006</Year>
<Month>Jul</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural insight into poplar glutaredoxin C1 with a bridging iron-sulfur cluster at the active site.</ArticleTitle>
<Pagination>
<MedlinePgn>7998-8008</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Glutaredoxins are glutathione-dependent enzymes that function to reduce disulfide bonds in vivo. Interestingly, a recent discovery indicates that some glutaredoxins can also exist in another form, an iron-sulfur protein [Lillig, C. H., et al. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 8168-8173]. This provides a direct connection between glutaredoxins and iron-sulfur proteins, suggesting a possible new regulatory role of iron-sulfur clusters along with the new functional switch of glutaredoxins. Biochemical studies have indicated that poplar glutaredoxin C1 (Grx-C1) is also such a biform protein. The apo form (monomer) of Grx-C1 is a regular glutaredoxin, and the holo form (dimer) is an iron-sulfur protein with a bridging [2Fe-2S] cluster. Here, we report the structural characterizations of poplar Grx-C1 in both the apo and holo forms by NMR spectroscopy. The solution structure of the reduced apo Grx-C1, which is the first plant Grx structure, shows a typical Grx fold. When poplar Grx-C1 forms a dimer with an iron-sulfur cluster, each subunit of the holo form still retains the overall fold of the apo form. The bridging iron-sulfur cluster in holo Grx-C1 is coordinated near the active site. In addition to the iron-sulfur cluster linker, helix alpha3 of each subunit is probably involved in the direct contact between the two subunits. Moreover, two glutathione molecules are identified in the vicinity of the iron-sulfur cluster and very likely participate in cluster coordination. Taken together, we propose that the bridging [2Fe-2S] cluster is coordinated by the first cysteine at the glutaredoxin active site from each subunit of holo Grx-C1, along with two cysteines from two glutathione molecules. Our studies reveal that holo Grx-C1 has a novel structural and iron-sulfur cluster coordination pattern for an iron-sulfur protein.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Yingang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Beijing Nuclear Magnetic Resonance Center, Beijing 100871, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhong</LastName>
<ForeName>Nan</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rouhier</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hase</LastName>
<ForeName>Toshiharu</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kusunoki</LastName>
<ForeName>Masami</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jacquot</LastName>
<ForeName>Jean-Pierre</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Changwen</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Bin</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>1Z7P</AccessionNumber>
<AccessionNumber>1Z7R</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516005">GLRX protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16800625</ArticleId>
<ArticleId IdType="doi">10.1021/bi060444t</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Hase, Toshiharu" sort="Hase, Toshiharu" uniqKey="Hase T" first="Toshiharu" last="Hase">Toshiharu Hase</name>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
<name sortKey="Jin, Changwen" sort="Jin, Changwen" uniqKey="Jin C" first="Changwen" last="Jin">Changwen Jin</name>
<name sortKey="Kusunoki, Masami" sort="Kusunoki, Masami" uniqKey="Kusunoki M" first="Masami" last="Kusunoki">Masami Kusunoki</name>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
<name sortKey="Xia, Bin" sort="Xia, Bin" uniqKey="Xia B" first="Bin" last="Xia">Bin Xia</name>
<name sortKey="Zhong, Nan" sort="Zhong, Nan" uniqKey="Zhong N" first="Nan" last="Zhong">Nan Zhong</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Feng, Yingang" sort="Feng, Yingang" uniqKey="Feng Y" first="Yingang" last="Feng">Yingang Feng</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003D17 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003D17 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16800625
   |texte=   Structural insight into poplar glutaredoxin C1 with a bridging iron-sulfur cluster at the active site.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16800625" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020